this development immediately pertains to binaryKpP, where P ∈ {2..K-1}.[a]

each finite value in the [nonnegative portion of a] value sequence is a arithmetic composition of three components:

  1. a trailing significand (a nonnegative integer in the range [0, 2^P-1])

    • this is a fractional binary value
  2. an implicit leading bit {0b0, 0b1}

    • the finite value is subnormal when the implicit bit is 0b0 and the trailing significand is non-zero
    • the finite value is normal when the implicit bit is 1b1, whatever the trailing significand may be.
  3. an exponent (stored as a nonnegative integer in the range [0, 2^(K-P)-1])

    • the exponent is biased (all values >= 0)
    • to recover its constructive value, subtract the bias (2^(K-P-1)-1) from the biased value.
    • the exponent acts multiplicatively as 2^exponent

each finite value in the [nonnegative portion of a] value sequence is determined with: value = (2^unbiased_exponent) * (implicit_bit + (trailing_significand_bits / 2^P))

  • value = (2^unbiased_exponent) * (implicit_bit) + (2^unbiased_exponent) * (trailing_significand / 2^P))
  • value = (2^unbiased_exponent) * (implicit_bit) + ((2^unbiased_exponent)/2^P) * (trailing_significand / 1))
  • value = (2^unbiased_exponent) * (implicit_bit) + (2^(unbiased_exponent-P) * trailing_significand)
  • subnormal value = (2^unbiased_exponent) * (0b0) + (2^(unbiased_exponent-P) * trailing_significand)
  • subnormal value = (2^(unbiased_exponent-P) * trailing_significand)
  • subnormal value = (2^(unbiased_exponent_min) * trailing_significand)
  • normal value = (2^unbiased_exponent) * (0b1) + (2^(unbiased_exponent-P) * trailing_significand)
  • normal value = (2^unbiased_exponent) + (2^(unbiased_exponent-P) * trailing_significand)
  • normal_value = (2^unbiased_exponent) + subnormal_value
  • aFloating-point value sequences that have no subnormal values are eccentric.